• Home
  • Biopharmaceutical Research Services
  • Multi-Omics Services
  • Support
  • /assets/images/icon/icon-email-2.png

    Email:

    info@MtoZ-Biolabs.com

    Resources

      Proteomics Databases

      resources1

      Metabolomics Databases

      resources2
    • • Advantages and Disadvantages of Protein Isoform Analysis by CE-SDS

      Protein isoform analysis is a crucial technique in the field of biology, particularly in protein research. Electrophoresis is one of the commonly used methods, among which Capillary Electrophoresis-Sodium Dodecyl Sulfate (CE-SDS) is widely recognized for its high resolution and sensitivity.

    • • Principle of Protein Isoenzyme Analysis by CE-SDS

      CE-SDS (Capillary Electrophoresis-Sodium Dodecyl Sulfate) is a critical technique in protein analysis, widely applied in biopharmaceuticals, protein engineering, and fundamental biological research. It combines the advantages of Capillary Electrophoresis (CE) and Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE), enabling efficient separation and analysis of protein isoforms.

    • • Mechanism of Protein Secondary Structure Analysis

      Proteins are fundamental molecules of life, with a close relationship between their structure and function. The secondary structure of proteins refers to the local folding patterns within a protein chain, primarily including alpha-helix and beta-sheet structures. Analyzing the secondary structure is crucial for understanding protein function, drug design, and disease mechanisms.

    • • Application of Protein Secondary Structure Analysis

      Proteins are among the most crucial biological macromolecules in living organisms, fulfilling a variety of functions such as catalyzing reactions, providing structural support, transporting molecules, and transmitting signals. The function of proteins largely hinges on their three-dimensional structure, with secondary structure forming the foundation for tertiary structure. Consequently, analyzing protein secondary structure holds significant importance in biological research.

    • • Workflow of Protein Secondary Structure Analysis

      Proteins are fundamental components of life, and understanding their structure is essential for revealing their function. The secondary structure of proteins, which includes local folded or coiled structures like α-helices and β-sheets, is formed by hydrogen bonds. Analyzing secondary structures is crucial for studying protein function, interactions, and their roles in diseases. This article details the workflow for protein secondary structure analysis.

    • • Mechanism of Protein Structure Identification

      Proteins are among the most important biological macromolecules in living organisms, performing a wide range of functions, including catalyzing chemical reactions, transmitting signals, and providing structural support. The functionality of proteins depends on their three-dimensional structures, making the determination of protein structures crucial in biological research. This article explores several common techniques for protein structure determination and their underlying mechanisms.

    • • Principle of Protein Secondary Structure Analysis

      Proteins are among the most crucial biomolecules in living organisms, involved in nearly every cellular process and function. Understanding protein structure is vital for uncovering its functions. Protein structure is divided into four levels: primary structure (amino acid sequence), secondary structure (local folding patterns such as α-helices and β-sheets), tertiary structure (the three-dimensional shape of the entire polypeptide chain)

    • • Application of Protein Structure Identification

      Proteins are the fundamental functional units of living organisms, responsible for catalyzing biochemical reactions, signal transduction, and constructing cellular structures, among other functions. Understanding the structure of proteins is crucial for comprehending their functions, mechanisms, and relationships with diseases. Protein structure identification is a key scientific technique with wide-ranging and profound impacts.

    • • Workflow of Protein Structure Identification

      Proteins are among the most crucial molecules in biological systems, involved in almost all cellular functions. Understanding protein structure is essential for revealing their functional mechanisms. The workflow for protein structure determination typically involves several key steps: protein extraction, purification, crystallization, data collection, and structure analysis.

    • • Principle of Protein Structure Identification

      Proteins, as fundamental functional units of living organisms, are essential in understanding biological processes and developing new drugs. Protein structure determination is a key approach to elucidate protein functions. This article will detail the principles and methods of protein structure determination.

    Submit Inquiry
    Name *
    Email Address *
    Phone Number
    Inquiry Project
    Project Description *

     

    How to order?


    /assets/images/icon/icon-message.png

    Submit Inquiry

    /assets/images/icon/icon-return.png